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Abstract

Ordered nanopatterns of triblock copolymer polystyrene-block-poly(2-vinylpyridine)-block- poly (ethylene oxide)
(PS-b-P2VP-b-PEO) have been achieved by the addition of lithium chloride (LiCl). The morphological and structural
evolution of PS-b-P2VP-b-PEO/LiCl thin films were systematically investigated by varying different experimental
parameters, including the treatment for polymer solution after the addition of LiCl, the time scale of ultrasonic
treatment and the molar ratio of Li+ ions to the total number of oxygen atoms (O) in PEO block and the nitrogen
atoms (N) in P2VP block. When toluene was used as the solvent for LiCl, ordered nanopattern with cylinders or
nanostripes could be obtained after spin-coating. The mechanism of nanopattern transformation was related to
the loading of LiCl in different microdomains.

Keywords: Ultrasound, Microphase separation, Triblock copolymer, Lithium chloride

Background
Recently, ion/block copolymers (BCPs) hybrids have be-
come highly attractive materials due to their flexibility,
process stability, self-assembling ability and novel features
of inorganic components such as electronic, magnetic and
optical properties [1–3]. Spatz and co-workers created
fused silica substrates with nanopillars on both sides
with 99.8% transmittance and 0.02% reflectance, which
was helpful for many laser applications [4]. Black et al.
fabricated densely packed silicon nanotextures with
feature sizes smaller than 50 nm by block copolymer
self-assembly to enhance the broadband antireflection of
solar cells [5]. Morris et al. fabricated Si nanowire array
by self-assembly of block copolymer with LiCl, which
showed the possible application in the area of photonics
and photoluminescence [6].
Compared with diblock copolymers (diBCPs), ABC

triblock copolymer (triBCPs) can assemble into new
morphologies such as periodic arrays of core/shell
spheres and cylinders, tetragonal lattices of cylinders,

and bicontinuous and tricontinuous ordered mesophases
[7–15]. However, ion/triBCPs hybrids are rarely reported
[16]. To further explore the novel properties of ABC
triBCPs and develop more performance requirements, it
is necessary to study the ion/triBCPs hybrids.
The addition of salts into the BCPs is one of effective

way to obtain ordered nanopatterns. Researchers have
found that polyethylene oxide (PEO) [17–19], poly-
methyl methacrylate (PMMA) [20], poly(ε-caprolactone)
(PCL) [21] or polyvinyl pyridine (PVP) [22, 23] are ion-
dissolving blocks, and polystyrene (PS) [24] is a non-
conducting block. Wang and co-workers suggested that
the selection of metal ions to blocks was primarily due
to the large solvation energy when the lithium salts as-
sociate with the polar PEO domains, leading to a large
increase in the effective segregation strength with lith-
ium salt loading [25, 26].
In previous experiments [6, 17, 27], the co-solvents for

salts are frequently used because of the solubility of salts
and the efficiency of coordination between salts and
BCPs. Russell et al. continuously stirred after the mix-
ture of LiCl in tetrahydrofuran (THF) and polystyrene-
block-poly(methyl methacrylate) (PS-b-PMMA) toluene
solution with moderate heating until most of THF was
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evaporated and the solutions became clear. And they
spent a great deal of time (about 24 h) on stir and
post-treatment (solvent vapor annealing and thermal
annealing) to obtain ordered microphase-separated nano-
structure [17, 28].
Herein, we demonstrated a simple and convenient

approach to generate various ordered nanopatterns of
ion/triBCPs hybrids by spin-coating method without any
further treatments. Morphological and structural varia-
tions of PS-b-P2VP-b-PEO thin films with different salt
concentrations were examined by adjusting various
processing parameters. This work indicated that the co-
ordination between PS-b-P2VP-b-PEO and LiCl-toluene
could be accelerated by ultrasonic treatment for fabricat-
ing ordered nanopattern.

Methods
Materials
Triblock copolymer polystyrene-block-poly(2-vinylpyri-
dine)-block-poly(ethylene oxide)(PS- b-P2VP-b-PEO,
45,000 g/mol, 16,000 g/mol, 8500 g/mol, Mw/Mn = 1.05)
was purchased from Polymer Source Inc. and used
without further purification in this study. Anhydrous
lithium chloride (LiCl, 95%+, AR) was purchased from
Tianjin Fuchen Chemical Reagents Factory. Toluene
(99 + %), ethanol and N,N-Dimethylform amide (DMF,
analytical grade) were purchased from Tianjin Damao
Chemical Co. Ltd. Silicon(Si) wafer was purchased from
No.46 Research Institute of China Electronics Technology
Group Corporation (CETC).

Sample Preparation
Si wafers were cleaned in DMF, ethanol and deionized
water under ultrasonic for 30 min at room temperature,
respectively. 0.1 wt% PS-b-P2VP-b-PEO toluene solution
was stirred for 24 h at room temperature. And LiCl was
dispersed in toluene by ultrasound for 30 min at room
temperature. Then various volume of LiCl toluene solu-
tion was immediately added to the PS-b-P2VP-b-PEO
micellar solutions. Those mixtures were treated by dif-
ferent ways to trigger complexation between Li+ ions
and polymer chains. The resultant solutions were spin-
coated immediately onto the substrate at 3000 rpm for
1 min after filtration. At last, the films were dried under
nitrogen at room temperature to remove the residual
solvent.

Characterization
Atomic force microscope (AFM) in SCANASYST-
AIR mode (Nanoscope-V Multimode 8, Bruker Inc.,
Germany) by using a silicon cantilever (spring constant
5 N/m and resonant frequency ~ 150 kHz, Budget Sen-
sors, Bulgaria Ltd.) was used to investigate the morpho-
logical features of PS-b-P2VP-b-PEO thin films. High-

resolution transmission electron microscopy (HRTEM)
measurement was carried out on a JEM-2100HR (JEOL,
Japan) operated at 200 kV accelerating voltage. Film
samples for TEM were prepared onto carbon-coated
copper grids. Those samples were exposed to I2 vapor
for certain time period. Fourier transform infrared (FT-
IR) spectra were recorded with a Nicolet 6700 (Thermo,
USA) spectrophotometer in the range of 4000–400 cm−1

with KBr plates. Ultraviolet–visible (UV-vis) spectra
were obtained on a UV-2450(Shimadzu, Japan) spectro-
photometer. X-ray photoelectron spectroscopy (XPS)
measurements were performed on ESCALAB 250
(Thermo, USA) with Al Ka excitation.

Results and Discussion
Morphology of Pure PS-b-P2VP-b-PEO Thin Film
When 0.1 wt% PS-b-P2VP-b-PEO toluene solution was
stirred for 24 h and spin-coated on silicon wafer, nano-
porous patterns could be observed in Fig. 1. The average
size of nanopores was about 22 nm.

Dispersion of LiCl in Toluene
Dispersions of LiCl in toluene with various aging times are
shown in Fig. 2. Toluene was not a good solvent for LiCl.
So suspension with unstable status could be seen after
ultrasonic treatment (Fig. 2a). It was noticeable that little
sedimentation phenomenon was observed when the aging
time was 5 min (Fig. 2d). Therefore, the prepared suspen-
sion should be used immediately after ultrasonic treatment.

Fig. 1 AFM height images of PS-b-P2VP-b-PEO films spin-coated
from 0.1 wt% PS-b-P2VP-b-PEO toluene solution
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Effect of Methods to Trigger the Coordination between LiCl
and Polymer Chains
Generally, stir and post-treatment are required for poly-
mer solution containing metal salts in order to trigger the
coordination between salts and polymer chains for fabri-
cation of ordered nanostructure, which takes a lot of time
[22, 28]. And the ultrasound is the simple way to acceler-
ate the coordination between metal ions and block co-
polymer [29–31]. In order to demonstrate the advantage
of ultrasonic treatment in this work, different methods
were used after the mix of LiCl-toluene and triblock co-
polymer solution when the molar ratio of Li+ ions to the
total number of oxygen atoms (O) in PEO block and the
nitrogen atoms (N) was 1:32.2([Li+]:[O + N] = 1:32.2).
When the mixed solution was stirred (1500 rpm) for
30 min at room temperature and then spin-coated
onto substrate, no distinct ordered structure was ob-
served in Fig. 3a. When the mixed solution was
stirred at 1500 rpm for 30 min at 75 °C and then

spin-coated onto substrate, disordered cylindrical mi-
crodomains appeared in Fig. 3b. When the mixed so-
lution was placed in ultrasonic cleaner for 30 min at
room temperature, microphase-separated nanopattern
with cylindrical microdomain was obtained obviously
in Fig. 3c after spin-coating. The energy provided by
sound waves was able to disrupt the larger aggregates
of the micelles. And the sound waves could further
increase the diffusion rate of metal ions in the solu-
tion, so the loading of Li+ ions in micelles were ex-
pected to happen much faster than the conventional
stirring method. This result indicated that ultrasonic
treatment was a useful method to improve the effi-
ciency of coordination between Li+ ions and polymer
chains.

Effect of Time Scale
In order to investigate the time scale of ultrasonic treat-
ment, the mixed solution ([Li+]:[O + N] = 1:32.2) was

Fig. 3 AFM height images of PS-b-P2VP-b-PEO films spin-coated from 0.1 wt% toluene solution with different methods after the addition
of LiCl-toluene when the molar ratio of Li+ ions to the total number of oxygen atoms (O) in PEO block and the nitrogen atoms (N) is
1:32.2: (a) 1500 rpm stirring for 30 min at room temperature, (b) 1500 rpm stirring for 30 min at 75 °C, (c) ultrasonic treatment for 30 min
at room temperature

Fig. 2 Dispersion of LiCl in toluene after ultrasonic treatment without and with different aging time: (a) without aging time, (b) 1 min,
(c) 3 min, (d) 5 min
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placed in ultrasonic cleaners for various times before
spin-coating. When the time was 7.5 min (Fig. 4a),
the nanoporous morphology was similar to the film
in Fig. 1. Compared with the film in Fig. 1, the
number and the average size of nanopores decreased,
which indicated that Li+ ions began to load in PS-b-
P2VP-b-PEO polymer chains after 7.5 min. The Li+

ions loaded in polymer chains would increase with
the time increasing. Parts of nanopores were con-
nected when the time increased to 15 min (Fig. 4b).
When the time was 22.5 min, the nanopattern exhib-
ited a coexistence of nanostripes and cylinders (Fig.
4c). When the time was prolonged to 30 min,
microphase-separation with cylindrical microdomains
occurred obviously (Fig. 3c). As the time extended
to 37.5 min, the coexistence of nanostripes and cy-
lindrical microdomains appeared again (Fig. 4d).
From above results, when the time was less than
30 min, the complexation between Li+ ions and PS-
b-P2VP-b-PEO was accelerated by ultrasonic treat-
ment so that more and more Li+ ions were coordi-
nated with PS-b-P2VP-b-PEO, resulting in transition
of nanopattern from nanoporous array to cylindrical
array. When the time was more than 30 min, the
energy provided by sound waves would break the

coordination of Li+ ions and polymer chains so that
disordered nanopattern was found instead of the cy-
lindrical array. Therefore, the time of ultrasonic
treatment should be controlled in appropriate range
to obtain obvious microphase-separated nanopattern.

Effect of LiCl Content in PS-b-P2VP-b-PEO Thin Films
The addition of LiCl has significant effects on
morphology since Li+ ions could be loaded in P2VP
and PEO blocks [17–19, 22, 23]. And the molar ratio
([Li+]:[O + N]) was varied in our work (Fig. 5).
When the molar ratio was 1:40.25, the nanopattern

of stripes was obtained (Fig. 5a). When the molar ra-
tio decreased to 1:32.2, nanopattern with cylindrical
microdomains could be seen in Fig. 3c. As the molar
ratio was 1:24.15, a lot of nanopores were connected
to show the tendency from nanopores pattern trans-
form to nanostripes (Fig. 5b). When the molar ratio
was 1:16.1, disordered nanopores become the overall
morphology (Fig. 5c). The average size of holes was
larger than the film in Fig. 1. As the molar ratio fur-
ther decreased to 1:8.05, a few of nanopaores was
observed in Fig. 5d. The average diameter of these
pores was more than 40 nm. From above results, an
order-to-disorder transition was shown in Fig. 5 by

Fig. 4 AFM height images of PS-b-P2VP-b-PEO films spin-coated from 0.1 wt% polymer-LiCl toluene solution with various time scale of
ultrasonic treatment when the molar ratio of Li+ ions to the total number of oxygen atoms (O) in PEO block and the nitrogen atoms (N) is
1:32.2: (a) 7.5 min, (b) 15 min, (c) 22.5 min, (d) 37.5 min
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controlling the addition of LiCl in ion/polymer hy-
brids. The change of LiCl loaded in polymer chains
was the reason for the morphological transition. The
LiCl loading in polymer chains increased with de-
creasing molar ratio ([Li+]:[O + N]), leading to the
different phase behaviors of the PS-b-P2VP-b-PEO/
LiCl hybrids. And the ordered arrangements of PS-
b-P2VP-b-PEO/LiCl hybrids were formed with the
critical amount of LiCl loaded.

Microdomains Location of Three Blocks in PS-b-P2VP-b-PEO
Thin Films
In order to explore the microdomain location of the
three blocks in PS-b-P2VP-b-PEO thin film under differ-
ent conditions, those samples were exposed to I2 vapor
for certain period before TEM measurement.
The PS-b-P2VP-b-PEO thin film without LiCl exhib-

ited an array of dark rings after the selective staining of
P2VP blocks, indicating that the periphery of the hole

Fig. 6 TEM images of PS-b-P2VP-b-PEO film after I2 staining with and without LiCl: (a) without LiCl, (b) with LiCl-toluene and the molar ratio of
LiCl to ethylene oxide moieties and pyridine groups was 1:40.25, (c) with LiCl-toluene and the molar ratio of LiCl to ethylene oxide moieties and
pyridine groups was 1:32.2

Fig. 5 AFM height images of PS-b-P2VP-b-PEO films spin-coated from 0.1wt%polymer-LiCl toluene solution with various molar ratio of Li+ ions to
ethylene oxide moieties and pyridine groups: (a) 1:40.25, (b) 1:24.15, (c) 1:16.1, (d) 1:8.05
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corresponded to P2VP blocks (Fig. 6a). Thus, the rest of
the hole should match with PEO blocks. The continuous
matrix was PS blocks. The average outer diameter of the
dark rings was about 21 nm and the average inner diam-
eter of the dark rings was about 16 nm.
When the molar ratio ([Li+]:[O + N]) was 1:40.25 after

I2 selective staining, the nanopattern of stripes was ob-
tained (Fig. 6b). The bright regions of the spheres were de-
pressed in striated structure. The bright regions were PEO
blocks and the rest of stripes were P2VP microdomains.
Hence, the continuous matrix was PS blocks. Distinct
dark particulates (of LiOH presumably) were observed in
P2VP domains [32]. The average diameter of PEO do-
mains was about 17 nm, which was similar to the average
domain size of PEO blocks in Fig. 6a. And the P2VP do-
mains transformed from dark rings to stripes. This result
indicated that most of Li+ ions were preferentially coordi-
nated with P2VP blocks when the molar ratio was 1:40.25.
When the molar ratio ([Li+]:[O + N]) decreased to

1:32.2, an array of dark rings could also be seen (Fig. 6c)
after I2 selective staining. The dark rings were P2VP mi-
crodomains and the bright regions were PEO blocks.
The continuous matrix was PS blocks. The average outer

diameter of dark rings was about 32 nm, and the average
inner diameter of dark ring was about 26 nm. It was
demonstrated that the cylindrical domains in Fig. 3c
were core-shell structure. The outer shell was P2VP
blocks and the core was PEO blocks. Compared with
the film in Fig. 6a, the PEO microdomains were obvi-
ously swelled and the P2VP domains slightly increased.
Compared with the film in Fig. 6b, this result indicated
that more Li+ ions were coordinated with PEO blocks
with more LiCl in PS-b-P2VP-b-PEO thin film.
The difference of Fig. 6b, c can be explained as shown

in Fig. 7. Because of the selectivity of toluene for three
blocks, the nanostructure of PS-b-P2VP-b-PEO mi-
celles in toluene was core-shell structure. Considering
the sequence of the three blocks in PS-b-P2VP-b-PEO,
PS blocks were the outer shell. The inner shell was
P2VP domain and the core was PEO blocks. When the
molar ratio ([Li+]:[O + N]) was 1:40.25, the Li+ ions were
mainly focused on the inner shell of P2VP blocks because of
the limited content of LiCl and the resistance of P2VP inner
shell. As a result, only a few of Li+ ions were coordinated
with PEO microdomains. When the molar ratio ([Li+]:
[O + N]) was 1:32.2, the interaction parameter of Li+ ions

Fig. 8 (a) FT-IR spectra of pure PS-b-P2VP-b-PEO thin film and the thin film with LiCl-toluene; (b) UV-vis spectra of pure PS-b-P2VP-b-PEO thin film;
(c) UV-vis spectra of PS-b-P2VP-b-PEO thin film with LiCl-toluene

Fig. 7 Schematic illustration of the fabrication of PS-b-P2VP-b-PEO nanopattern with and without Li+ ions
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and the PEO blocks effectively increased due to the increase
of LiCl-toluene, resulting in the obvious swelling in PEO do-
mains [32–36].

Analysis of Competitive Interactions of Li+ ions with PEO
and P2VP Blocks
It is noteworthy that the competitive interactions of Li+

ions with both the PEO and P2VP blocks exist in PS-b-
P2VP-b-PEO/LiCl hybrids [3]. The interaction between
the Li+ ions and the PEO blocks was characterized by
FT-IR (Fig. 8a). The parameter of Ia/If, which was the
ratio of the peak intensity corresponding to the associ-
ated C-O-C to the peak intensity of free C-O-C, was
used to evaluate the coordination between the Li+ ions
and the PEO blocks (Table 1) [37, 38]. The C-O-C
stretching vibration changed from 1124 to 1111 cm−1.
The value of Ia/If increased with the doped LiCl increasing,
indicating that the loading of Li+ ions in PEO blocks in-
creased when the molar ratio ([Li+]:[O + N]) decreased
from 1:40.25 to 1:8.05.
The UV-vis spectra of various PS-b-P2VP-b-PEO thin

films are illustrated in Fig. 8b, c. The absorption peak at
262 nm was assigned to pyridine groups and phenyl
groups of PS-b-P2VP-b-PEO [39]. Based on the previous
study [24], the obvious change of the intensity was at-
tributed to the coordination between Li+ ions and pyri-
dine groups. The intensities of absorption peak at
262 nm with different samples were summarized in
Table 2. The intensities of absorption peak at 262 nm
for PS-b-P2VP-b-PEO thin films with LiCl (Fig. 8c) were
weaker than the pure film (Fig. 8b). When the molar ra-
tio ([Li+]:[O + N]) was 1:40.25, 1:24.15, 1:16.1 and 1:8.05,
the intensity of absorption peak at 262 nm decreased
with the LiCl addition increasing (Fig. 8c), indicating
that more and more Li+ ions were coordinated with the
P2VP blocks and PEO blocks. However, when the molar
ratio ([Li+]:[O+N]) was 1:32.2, the absorption peak at
262 nm was stronger than the molar ratio 1:40.25. The
reason should be that most of Li+ ions were loaded in
PEO blocks but not P2VP blocks when the molar ratio
was about 1:32.2, and the least LiCl was loaded in P2VP
blocks at this molar ratio ([Li+]:[O + N] = 1:32.2) com-
pared with other thin films with LiCl.

The PS-b-P2VP-b-PEO thin films without and with
LiCl-toluene ([Li+]:[O + N] = 1:32.2) were analyzed by X-
ray photoelectron spectroscopy (XPS) (Figs. 9 and 10).
XPS survey spectra (Fig. 9) of PS-b-P2VP-b-PEO with LiCl
confirmed the presence of C, O, N, Li and Cl. The C1s
binding energy in C-C bonds was 284.78 eV. The O1s
binding energy of C-O-C in PEO block was 533.08 eV, and
N1 s binding energy based on the P2VP block was
399.48 eV. The Cl2p appeared at 198.28 eV, and Li1s
appeared in 55.88 eV. High resolution XPS spectra
of N1 s binding energy and O1s binding energy in
PS-b-P2VP-b-PEO with and without LiCl were
shown in Fig. 10a, b. The N1 s binding energy in
PS-b-P2VP-b-PEO without LiCl was 398.88 eV, but
the binding energy in the thin film with LiCl was
399.48 eV. The O1s binding energy in PS-b-P2VP-b-
PEO without LiCl was 532.78 eV, but the binding
energy in the thin film with LiCl was 533.08 eV.
These shifts in binding energy were consequences of
electron withdrawing effect caused by the coordin-
ation between Li+ and PS-b-P2VP-b-PEO [40], valid-
ating the presence of Li element in the thin film
after Li+ ions were loaded. These results were essen-
tially identical to the results in Fig. 8.

Fig. 9 XPS survey spectra of PS-b-P2VP-b-PEO thin film with LiCl-toluene

Table 2 The intensity of absorption peak at 262 nm with
different PS-b-P2VP-b-PEO thin films

Samples Intensity at 262 nm (a.u.)

PS-b-P2VP-b-PEO thin film 0.123

1:32.2 0.023

1:40.25 0.015

1:24.15 0.013

1:16.1 0.011

1:8.05 0.009

Table 1 The data of Ia/If for different PS-b-P2VP-b-PEO/LiCl
hybrids in LiCl-toluene

[Li+]:[O + N] Ia/If

1:40.25 0.2522

1:32.2 0.3165

1:24.15 0.3670

1:16.1 0.4266

1:8.05 0.4908
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Conclusions
In this study, we present a simple approach to fabri-
cate ordered nanopatterns of ion/triblock copolymers
hybrids without post-processing. This work demon-
strated that toluene could be used as co-solvents for
LiCl in short time. An order-to-disorder transition
was triggered by varying the addition of LiCl-toluene
with ultrasonic treatment. And ordered microphase-
separated nanopatterns of cylindrical array and stripes
were obtained. The mechanism of the morphological
transition was due to the LiCl loaded in different ion-
dissolving blocks. This rapid synthesis might boost
future studies of ion/triblock copolymers hybrids be-
cause of the advantage of ultrasonic as compared to
the conventional routes. Furthermore, this approach
has potential applications in developing ultra-small
devices via techniques such as pattern transfer owing
to its simplicity, effectiveness and low cost, especially
regarding to fabrication time.
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